Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Smart city transportation infrastructure will soon demand the development of reliable underground IoT (IoUT) communication. In this paper, we develop a novel analytical model, MAME (Material Aware Measurement Enhanced), to capture signal propagation properties in wireless IoUT networks to achieve reliable data transport. A driving motivation is monitoring underground infrastructure systems (e.g., pipelines and storm drains) for early detection of anomalies and failures to guide human investigation and intervention. We analyze the feasibility of successfully receiving wireless data packets from underground (UG) sensor nodes through multiple material layers and under diverse environmental conditions. Our proposed approach integrates physics-based modeling and empirical studies with small-scale testbeds (in our lab and outdoors) with multiple channel setups and physical layer attributes. We derive a novel MAME approach to model signal propagation in both 802.11-based WiFi and LoRaWAN networks. The resulting MAME model is shown to capture communication behavior in WiFi and LoRaWAN networks accurately. The MAME model is used to augment the popular NS3 simulator to explore scaled-up underground networks and varying channel conditions (e.g., soil moisture level). Such a combined analytical-empirical approach will enable the communication control plane and application layer to better predict channel conditions for improved IoUT network design.more » « less
- 
            Next-generation stream processing systems for community scale IoT applications must handle complex nonfunctional needs, e.g. scalability of input, reliability/timeliness of communication and privacy/security of captured data. In many IoT settings, efficiently batching complex workflows remains challenging in resource-constrained environments. High data rates, combined with real-time processing needs for applications, have pointed to the need for efficient edge stream processing techniques. In this work, we focus on designing scalable edge stream processing workflows in real-world IoT deployments where performance and privacy are key concerns. Initial efforts have revealed that privacy policy execution/enforcement at the edge for intensive workloads is prohibitively expensive. Thus, we leverage intelligent batching techniques to enhance the performance and throughput of streaming in IoT smart spaces. We introduce BatchIT, a processing middleware based on a smart batching strategy that optimizes the trade-off between batching delay and the end-to-end delay requirements of IoT applications. Through experiments with a deployed system we demonstrate that BatchIT outperforms several approaches, including micro-batching and EdgeWise, while reducing computation overhead.more » « less
- 
            Efficient water use, particularly in the realm of irrigation, has emerged as a critical concern in regions suffering from persistent drought, such as California and Florida. With the advent of smart irrigation controllers encouraged by environmental policies, a new paradigm of water management is gaining traction. Among these, the Rachio smart controller has garnered significant attention. However, without direct feedback or actual water usage data, optimizing these irrigation systems for enhanced efficiency remains challenging. This paper introduces Water-COLOR, a novel recommendation system integrated within the Rachio smart controller's framework to address this challenge. The system leverages similar landscape profiles to suggest irrigation schedules that are both water-efficient and user-preferable. By analyzing manual user interactions with the controller, Water-COLOR infers user satisfaction, which, along with estimated water usage, informs the adaptation of irrigation plans. The system eschews the need for additional sensors, thereby reducing infrastructure requirements. Our evaluation demonstrates consistent performance across diverse climatic regions and indicates that the system's recommendations could significantly contribute to water conservation efforts. The results not only showcase the potential of Water-COLOR to enhance the efficiency of existing smart irrigation systems but also open avenues for deploying real-time, data-driven environmental solutions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available